
Start Slide

AUTOMATIONAUTOMATION
PIPELINEPIPELINE

am
an

d
ar

iz
ki

p
at

i@
g

m
ai

l.c
om

C O M P R E H E N S I V E D A T A A N A L Y T I C S P R O G R A M

REFERENCE
D A T A S E T S O U R C E

Retail Transaction Dataset - Kaggle

am
an

d
ar
iz
ki
p
at
i@

g
m
ai
l.c
om

https://www.kaggle.com/datasets/fahadrehman07/retail-transaction-dataset/data

Background of the Analysis

Company Profile The Objective

To develop an automated data
pipeline for real-time analysis of
transactions, customer behavior,
and sales trends, enabling data-
driven decisions, improving
efficiency, and optimizing business
performance.

RetailX is a multi-location retail
company offering fashion,
electronics, and daily goods. As the
business scales, it requires an
automated data system to manage
transactions and support strategic
insights.

Business Understanding

Retail businesses require daily, weekly, and monthly sales dashboards to:

Identify top-selling products and dominant product categories.

Detect top-performing store locations.

Understand customer responses to discounts and promotions.

Monitor payment trends (cash, card, digital).

Recognize seasonal shopping patterns and peak transaction times.

Currently, transactional data
exists as raw CSV files that
cannot be directly analyzed
without preprocessing. An
automated ETL pipeline is
required to consistently
process and store this data
into a database.

Business Problem

How can we build an automated data pipeline
system that not only extracts raw retail transaction
data but also performs data cleaning and
transformation, calculates essential metrics such as
total sales, discounts, and transaction (if needed),
and efficiently stores the results in a MongoDB
database for timely and reliable analysis?

Business Process

The business process involves automatically
extracting daily retail transaction data using
PySpark, cleaning and transforming it to calculate
key metrics such as total sales and discount values,
and then loading the structured data into
MongoDB. This entire workflow is scheduled and
orchestrated using Apache Airflow, ensuring
consistent, timely, and accurate data availability for
analysis and reporting.

Dataset Overview
The Retail Transaction Dataset consists of 10
key columns that capture essential
information from each transaction,
including customer and product identifiers,
purchase quantity, pricing details,
transaction time, payment methods, store
locations, product categories, discounts
applied, and the total payment made.

Pra-Automation

01 Based on the analysis, the data types of all
attributes in each DataFrame are already
appropriate and correctly assigned. Therefore, no
data type conversion or modification is necessary.

Checking Data Types

02 All columns in the dataframe contain no missing
values and are ready for analysis.

Checking Missing Value

03 All columns in the dataframe are free of duplicate
rows, ensuring high data quality and reliable
foundation for analysis and modeling.

Checking Duplicate Data

Great Expectation

In this validation step using Great
Expectations, we applied a rule to ensure that
each product purchase within a transaction
is unique. This is done by setting a composite
key across CustomerID, TransactionDate, and
ProductID. The results show that all 100,000
records passed the validation—no duplicates
or missing values were found. This confirms
the integrity of our transactional data,
ensuring that each row represents a unique
product purchase as expected.

Great Expectation

In this validation, we checked that all
quantity values are at least 1, ensuring
there are no transactions with zero or
negative quantity. As shown in the
results, all 100,000 records passed this
expectation with no missing or
unexpected values. This confirms that
the Quantity column meets the
minimum value requirement and the
data is clean and reliable for further
analysis.

Great Expectation

In this step, we validated the
PaymentMethod column to ensure it only
contains a predefined set of values—Cash,
PayPal, Credit Card, and Debit Card. This
helps prevent data quality issues caused by
typos or invalid entries. As shown, all 100,000
records met this expectation, with 0%
unexpected or missing values. This confirms
the consistency and validity of payment
method data across the dataset.

Great Expectation

In this expectation, we validated that
the DiscountApplied(%) column
contains numeric values of type
float64. This is crucial for ensuring
that discounts can be correctly
calculated in further analysis. The
validation was successful, confirming
that all discount values are indeed in
the correct numeric format, which
maintains the integrity of any price or
discount-related computation.

Great Expectation

This expectation checks whether the
TransactionDate column follows the correct
datetime format: 'day/month/year, hour:minute'.
Ensuring consistent datetime formatting is crucial
for time-based analysis and filtering. The
validation result shows 100% success, meaning all
entries in the column are correctly formatted
without any missing or mismatched values.

Great Expectation

This expectation ensures that the length of the
values in the ProductCategory column is within a
reasonable range, between 3 and 30 characters. This
check is useful to avoid entries that are either too
short to be meaningful or too long to be practical.
The validation passed 100%, indicating that all
category names fall within the expected character
length range.

Great Expectation

This expectation validates whether the discount
percentage in the DiscountApplied(%) column falls
within a logical range of 0 to 100. This ensures the
data reflects realistic discount values. The validation
result shows a 100% success rate, meaning all entries
comply with the expected range and there are no
anomalies detected.

Great Expectation

In this step, we applied an expectation to validate the store
location format using a regular expression. The expected format is
Address line | City, ST ZIPCODE. The result shows that none of the
records passed the validation, as indicated by success: false and a
high unexpected_count. This means the address values do not
match the expected pattern and likely require further cleaning or
normalization.

Extract Process
The pipeline begins with the extract, which reads
the raw transaction data from a .csv file using
PySpark. The data is loaded into a DataFrame for
scalable processing. After extraction, the raw data
is saved as extracted.csv for backup and
traceability.

Transform Process
In the Transform step, we performed essential data cleaning
and enrichment using PySpark. A unique TransactionID was
added using monotonically_increasing_id() to ensure that
each record can be uniquely identified. Additionally, we
cleaned newline characters from the StoreLocation column
using regexp_replace() to maintain consistency in location
data.

Although not fully implemented in this step, it is also
recommended to handle missing values and duplicate
entries at this stage to ensure the reliability and quality of the
data before further analysis. The cleaned dataset is saved as
transformed.csv for the next pipeline step.

Load Process
In the Load stage, we imported the transformed
retail transaction data into MongoDB for
centralized and scalable storage. The PySpark
DataFrame was first converted to a Pandas
DataFrame and then stored into the
P2M3_Database under the TransactionData
collection. This approach enables easy integration
with analytics tools and supports real-time
querying.

Workflow Orchestration

All scripts, extract.py, transform.py, and load.py are
scheduled to run automatically using Apache Airflow. A
Directed Acyclic Graph (DAG) orchestrates the entire ETL
workflow, triggering each task in sequence every Saturday at
09:10 AM, 09:20 AM, and 09:30 AM, starting from November
1, 2024. This automated scheduling ensures the consistency,
reliability, and timeliness of the data pipeline, minimizing
manual intervention and reducing the risk of errors.

The ETL pipeline runs in sequence: extract.py loads raw data,
transform.py cleans and adds features, and load.py inserts
the final data into MongoDB.

The Result
The result is a structured
and clean dataset stored in
MongoDB, ready for
visualization and advanced
analytics. Analysts can now
access updated data daily
without manual processing
delays.

End Slide

THANK YOUYOU
A M A N D A R I Z K I - C O D A R M T 0 0 6

am
an

d
ar

iz
ki

p
at

i@
g

m
ai

l.c
om

